
V I K T O R B A R A N O V
B L O C K S C O U T O F F S I T E E V E N T ,

I S T A N B U L , O C T O B E R 2 0 2 4

BLOCKSCOUT INDEXER
ARCHITECTURE OVERVIEW

Ethereum
JSON RPC

Indexer

Explorer

API

BLOCKSCOUT
MONOLITH

UI

W E B

STORAGE

JSON RPC

PALEOLITH
MONOLITH

EPOCH
2 0 1 8 - 2 0 2 2

V1

BLOCKSCOUT V2.0 MIGRATION

FROM CLOUD TO
ON-PREMISE

MICROSERVICE
ARCHITECTURE

FRESH LOOK &
FILL

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer

API

BLOCKSCOUT

UI

W E BV2
K8S

K8S

NEW FRONTEND

V2

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer

API

BACKEND FRONTEND

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer

API

BACKEND

MICROSERVICES

Sc verifier Metadata Interpretat
or

ETH
bytecode

DB

ADMIN
DASHBOARD

BENS Stats

Visualizer Sig
provider DA indexer

User pos
indexer

Multichain
search

Smart
guess

K8S

NEW FRONTEND

MICROSERVICES

V2
FRONTEND

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer

API

BACKEND

MICROSERVICES

Sc verifier Metadata Interpretat
or

ETH
bytecode

DB

ADMIN
DASHBOARD

BENS Stats

Visualizer Sig
provider DA indexer

User pos
indexer

Multichain
search

Smart
guess

K8S

NEW FRONTEND

MICROSERVICES

V2
FRONTEND

Import of new blocks data from the
head of the chain

REALTIME

Import of blocks data down the chain

CATCHUP

BLOCKSCOUT INDEXER

MAIN INDEXERS SECONDARY FETCHERS

Both main indexers comprises from synchronous and
asynchronous parts.

Coin / token price, market cap, tvl sources: CMC,
Coingecko, Cryptorank, Defillama

Sc verification: ETH bytecode DB, Sourcify

Data enrichment: ENS names, public tags, AI interpreters
(own, Noves Fi), sc security scanners (Solidityscan), assets
portfolio (Zerion)

Chain initialization data import: pre-mined coins,
precompiled smart-contracts

OFF CHAIN INTEGRATIONS

There is a dozen of chain-specific data fetchers including
arbitrum, optimism, polygon edge, polygon zkevm, zksync
etc.

CHAIN-SPECIFIC FETCHERS

Coin/token balances update

Contract bytecodes fetch/re-check

Contract source codes lookup

NFT instance metadata re-fetch

Token total supply

ON-DEMAND

Internal transactions

Pending transactions

Dropped/Replaced transactions

Contract bytecodes

Block rewards

Token catalog

Token/coin balances

REGULAR

NFT instances

Uncles

They work once in order to resolve possible data
inconsistency.

TEMPORARY FETCHERS

CATCHUP INDEXER

BLOCK IMPORT

๏ At application start it calculates which block numbers
are missing in the DB and generates missing block
ranges which catchup indexer should fill.

๏ It processes blocks in batches. The batch size and
concurrency are managed via env variables.

B0 B2

TX1 TX2 TXn2…

Bi

TX1 TX2 TXni…
…

Bn

TX1 TX2 TXnk…
…

REALTIME INDEXER

TAIL HEAD

B1

TX1 TX2 TXn1…

BLOCKCHAIN

curl -X POST --data '[

{"jsonrpc":"2.0","method":"eth_getBlockByNumber","params":["0x...", true],"id":1}, 
{"jsonrpc":"2.0","method":"eth_getBlockByNumber","params":["0x...", true],"id":2}, 
…

{"jsonrpc":"2.0","method":"eth_getBlockByNumber","params":["0x...", true],"id":n} 
]'

wscat -c wss://… -X
'{"jsonrpc":"2.0", "id": 1, "method":
"eth_subscribe", "params":
["newHeads"]}'

๏ Connect via subscription to
websockets

curl -X POST --data
‘{"jsonrpc":"2.0","method":"eth_blo
ckNumber","params":[],"id":1}'

๏ Poll by HTTP requests
If catchup indexer failed to
process block (due to reaching
timeout), it is moved to another
queue aka «massive blocks
fetcher».

💡

LET’S DIVE INTO
SYNCHRONOUS PART OF

BLOCK IMPORT…

๏ Once blocks info is fetched, info about uncles is
extracted (uncle has to nephew hashes mapping and
uncles index).

๏ And now it checks, if the chain follows PoA «clique»
consensus algorithm, than it transforms block miner
address by recovering its public key from the header
and extra data.

๏ For each block in the requested numbers range
Blockscout fetches transaction receipts in batches

๏ Every tx receipt contains the list of logs. Blockscout
parses those logs into insertable changesets.

๏ Then, token transfers are extracted from the logs.
Transfers are parsed based on logs combination of
topics.

๏ Together with transfers, tokens’ addresses are
extracted from the logs.

curl -X POST --data '[

{"jsonrpc":"2.0","method":"eth_getTransactionReceipt","params":["0x..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"eth_getTransactionReceipt","params":["0x..."],"id":n}]'

Block import steps also contain chain-specific requests,
transformations. I do not mention them for simplification of
the overview.

💡

ERC-20 or ERC-721 (topic 0="0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef"
== keccak256(Transfer(address,address,uint256)))

ERC-20 (FT) topic 1 is not empty (to) && topic 2 is not empty (from) and amount is from log’s data.

ERC-721 (NFT) topic 1 is not empty (to) && topic 2 is not empty (from) && topic 3 is not empty (instance_id).

ERC-1155

- single transfer (topic 0="0xc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62"
keccak256(TransferSingle(address,address,address,uint256,uint256))

- batched transfer (topic 0="0x4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb" ==
keccak256(TransferBatch(address,address,address,uint256[],uint256[]))

ERC-404

- FT transfer (topic 0="0xe59fdd36d0d223c0c7d996db7ad796880f45e1936cb0bb7ac102e7082e031487"
keccak256(ERC20Transfer(address,address,uint256))

- NFT transfer (topic 0="0xe5f815dc84b8cecdfd4beedfc3f91ab5be7af100eca4e8fb11552b867995394f" ==
keccak256(ERC721Transfer(address,address,uint256)))

«WETH» deposits/withdrawals 
- deposit (topic 0="0xe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c"
keccak256(Deposit(address,uint256)))

- withdrawal (topic 0="0x7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b65" ==
keccak256(Withdrawal(address,uint256)))

Indexer processes blocks in batches. The batch size and
concurrency are managed via env variables.

💡

BLOCK IMPORT (SYNCHRONOUS PART)

๏ Next step is to fetch block rewards. Depending on the type
of the JSON RPC client is used whether block rewards are
requested from `trace_block` method (Erigon, Nethermind,
OpenEthereum (R.I.P.)) or calculated manually by
summarising transaction fees from all block transactions.

๏ Once all responses are received from preceding JSON RPC
requests we need to extract the rest of the data from the
received responses:
- Blockscout extracts addresses from all previous entities
(blocks, logs, transfers, txs, withdrawals, block reward
beneficiaries).
- Then, address’ coin balances (historical and current) are
fetched from beneficiaries, blocks, logs, transactions,
withdrawals.
- Next is address’s token balances (historical and current).

๏ - And the last part of synchronous import is token instances,
which parsed from transfers.

curl -X POST --data '[

{"jsonrpc":"2.0","method":"trace_block","params":["0x..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"trace_block","params":["0x..."],"id":n}]'

At the synchronous part of the block import, there only
balance placeholders are inserted. And then,
asynchronous process constantly monitors of those
placeholders and fill them with the exact balances of the
address at this block height

💡

BLOCK IMPORT (SYNCHRONOUS PART)

JSON RPC
RESPONSES

TRANSFORMED
TO BE INSERTED

INTO THIS
DB SCHEMA

BLOCK DATA
DB INSERT

STAGES

Addresses
Addresses coin balances (+daily)
Blocks
Transactions
Token transfers

ADDRESSES + BLOCK-
RELATED DATA 1

Internal transactions4

Transactions forks
Logs
Tokens
NFT instances

BLOCK-REFERENCING + TOKENS2

Block second degree relations
Block rewards
Historical token balances
Current token balances

BLOCK-FOLLOWING + TOKEN-
RELATED DATA

3

ASYNCHRONOUS PART OF BLOCK IMPORT

 defp async_import_remaining_block_data(
 imported,
 %{block_rewards: %{errors: block_reward_errors}} = options
) do
 realtime? = false

 async_import_block_rewards(block_reward_errors, realtime?)
 async_import_coin_balances(imported, options)
 async_import_created_contract_codes(imported, realtime?)
 async_import_internal_transactions(imported, realtime?)
 async_import_tokens(imported, realtime?)
 async_import_token_balances(imported, realtime?)
 async_import_uncles(imported, realtime?)
 async_import_replaced_transactions(imported, realtime?)
 async_import_token_instances(imported)
 …
 end

REGULAR FETCHERS

This is continuous process, which checks block
numbers in `pending_block_operations` table
that internal transactions should be fetched for.
This is the most time-consuming JSON RPC
request in the most scenarios.

INTERNAL TRANSACTIONS FETCH curl -X POST --data '[

{"jsonrpc":"2.0","method":"debug_traceBlockByNumber","params":["0x...", {"tracer": "callTracer"}],"id":1}, 
…

{"jsonrpc":"2.0","method":"debug_traceBlockByNumber","params":["0x...", {"tracer": "callTracer"}],"id":n}]'

Together with `callTracer` tracer, which is default option,
Blockscout also supports custom js tracer and struct/
opcode logger.

💡 In case of Erigon/Nethermind JSON RPC variants,
`trace_replayBlockTransactions` method is called
instead.

💡

This is continuous process, which periodically
fetches pending transactions from public
mempool.

PENDING TRANSACTIONS FETCH

curl -X POST --data ‘{"jsonrpc":"2.0","method":"txpool_conent","params":[],"id":1} In case of Nethermind JSON RPC
variant, `parity_pendingTransactions`
method is called instead.

💡

This is continuous process, which periodically
checks if the node doesn’t return any info on
given transaction hash, the process marks such tx
as «dropped/replaced».

DROPPED/REPLACED TRANSACTIONS
MARKING

This is continuous process, which periodically
checks if transactions exist in the DB where
contract is created, but its byte code is not
indexed yet.

CONTRACT BYTECODES FETCH curl -X POST --data '[

{"jsonrpc":"2.0","method":"eth_getCode","params":["0x...", "0x..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"eth_getCode","params":["0x...", «0x..."],"id":n}]'

REGULAR FETCHERS

This is continuous process, which periodically
checks if blocks exist, but corresponding rewards
are not.

BLOCK REWARDS FETCH curl -X POST --data '[

{"jsonrpc":"2.0","method":"trace_block","params":["0x..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"trace_block","params":["0x..."],"id":n}]'

This is continuous process, which periodically
checks token balance placeholders in the DB
and fills them via requesting `balanceOf` method
in eth_call request.

TOKEN BALANCES FETCH
curl -X POST --data '[

{"jsonrpc":"2.0","method":"eth_call","params":["0x70a08231..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"eth_call","params":["0x70a08231..."],"id":n}]'

`0x00fdd58e` - signature
is used for NFTs
(balanceOf(address,
uint256))

💡

This is continuous process, which periodically
updates total supply of tokens, when burn or mint
event is happened via requesting `totalSupply()`
method in eth_call request.

TOKEN TOTAL SUPPLY UPDATE curl -X POST --data '[

{"jsonrpc":"2.0","method":"eth_call","params":["0x18160ddd..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"eth_call","params":["0x18160ddd..."],"id":n}]'

This is continuous process, which periodically
checks coin balance placeholders in the DB and
fills them via requesting eth_getBalance request.

COIN BALANCES FETCH
curl -X POST --data '[

{"jsonrpc":"2.0","method":"eth_getBalance","params":["0x...", "0x..."],"id":1}, 
…

{"jsonrpc":"2.0","method":"eth_getBalance","params":["0x...", «0x..."],"id":n}]'

REGULAR FETCHERS

NFT INSTANCES AND METADATA

It indexes metadata for new NFT instances (fast
lane).

REAL-TIME

Real-time fetcher will also proceed with a single re-try on
404, 500 errors in 5 secs after the 1st try

💡

It attempts to index metadata for NFT fetching of
which failed before. Exponential backoff is used
to calculate time to the next retry attempt.

RE-TRY ON ERRORS

When reaching a week delay in retry for the given NFT
instance, it becomes a constant. So, next re-tries will
happen once in 7 days.

💡

It continuously looks up token instances without
errors in the DB, but also with metadata and tries
to fetch that metadata (long queue).

CATCHUP

Errors"request error: 429", ":checkout_timeout",
":econnrefused", «:timeout" are prioritized among others.

💡

Also fetchers-sanitisers are present, which try to fetch missing
NFT instances (token transfers are detected, but
corresponding token instance weren’t indexed)

💡

This is continuous process, which periodically
updates tokens’ metadata (name, symbol,
decimals) via requesting those props in eth_call
request. The process restarts every 48 hrs.

CATALOGED TOKENS METADATA UPDATE

This is continuous process, which
periodically adds new tokens to catalog
and performs initial metadata (name,
symbol, decimals) fetching via requesting
those props in eth_call request.

CATALOG TOKENS

This is continuous process, which
periodically updates block uncle info
via requesting
eth_getUncleByBlockHashAndIndex
JSON RPC method.

BLOCK UNCLES FETCH

ON-DEMAND FETCHERS

When someone opens address page (/
address/:hash) or requests corresponding API
endpoint (/api/v2/addresses/:hash) coin balance
is updated through message to backend’s web
socket endpoint via requesting eth_getBalance
JSON RPC method.

COIN BALANCES FETCH

When someone opens address page (/
address/:hash) or requests corresponding API
endpoint (/api/v2/addresses/:hash) contract
code is fetched via requesting eth_getCode
JSON RPC method through message to
backend’s web socket endpoint.

CONTRACT CODE FETCH

When someone triggers address page (/
address/:hash?tab=tokens) or corresponding API
endpoints (/api/v2/addresses/:hash/tokens or /api/
v2/addresses/:hash/token-balances) corresponding
token balances are updated through message to
backend’s web socket endpoint via requesting
`balanceOf/1` or `balanceOf/2` method through
eth_call JSON RPC request.

TOKEN BALANCES FETCH

When someone opens smart-contract’s address’s
page «Code»/«Logs» tabs (/address/:hash?
tab=contract or /address/:hash?tab=log) or
requests corresponding API endpoint (/api/v2/
smart-contracts/:hash) contract code is re-
fetched via requesting eth_getCode JSON RPC
method through message to backend’s web
socket endpoint. Check is running once the last
check was >= 24 hrs ago.

CONTRACT CODE RE-CHECK

It re-fetches token instance metadata, if
metadata exists (soon for every token
instance) through «Refresh metadata»
button in the UI or via triggering POST
api/v2/tokens/:hash/instances/:id/
refetch-metadata endpoint.

NFT INSTANCE METADATA
RE-FETCH

It keeps token total supply up to date.
When someone opens smart-contract’s
token’s page (/token/:hash) or requests
corresponding API endpoint (/api/v2/
tokens/:hash) via requesting
`totalSupply()` method through eth_call
JSON RPC request.

TOKEN TOTAL SUPPLY
UPDATE

When someone opens smart-contract’s address’s
page «Code»/«Logs» tabs (/address/:hash?
tab=contract or /address/:hash?tab=log) or
requests corresponding API endpoint (/api/v2/
smart-contracts/:hash), attempt is triggered to fetch
verified contract source code from ETHbytecode DB
Rust microservice. Check happens if the last one was
>= 10 mins ago.

CONTRACT SOURCE CODE LOOKUP
IN ETH BYTECODE DB

To be done…

CONTRACT DEPLOYER FETCH

WHAT IS NEXT?…

V3

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer

API

BACKEND

ADMIN
DASHBOARD

MICROSERVICES

Sc verifier Metadata Interpretat
or

ETH
bytecode

DB
BENS Stats

Visualizer Sig
provider DA indexer

User pos
indexer

Multichain
search

Smart
guess

K8S

NEW FRONTEND

MICROSERVICES

V2
FRONTEND

V3

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer
API

BACKEND

ADMIN
DASHBOARD

MICROSERVICES

Sc verifier Metadata Interpretat
or

ETH
bytecode

DB
BENS Stats

Visualizer Sig
provider DA indexer

User pos
indexer

Multichain
search

Smart
guess

K8S

NEW FRONTEND

MICROSERVICES

V2
FRONTEND

RUST API

V3

STORAGE
JSON RPC

Ethereum
JSON RPC

Indexer

Explorer

API

BACKEND

ADMIN
DASHBOARD

MICROSERVICES

Sc verifier Metadata Interpretat
or

ETH
bytecode

DB
BENS Stats

Visualizer Sig
provider DA indexer

User pos
indexer

Multichain
search

Smart
guess

K8S

NEW FRONTEND

MICROSERVICES

V2
FRONTEND

V3

STORAGE
JSON RPC

Ethereum
JSON RPCIndexer

Explorer

API

BACKEND

ADMIN
DASHBOARD

MICROSERVICES

Sc verifier Metadata Interpretat
or

ETH
bytecode

DB
BENS Stats

Visualizer Sig
provider DA indexer

User pos
indexer

Multichain
search

Smart
guess

K8S

NEW FRONTEND

MICROSERVICES

V2
FRONTEND

RUST BACKEND

THANKS!

